Stabilization of cat paw trajectory during locomotion.

نویسندگان

  • Alexander N Klishko
  • Bradley J Farrell
  • Irina N Beloozerova
  • Mark L Latash
  • Boris I Prilutsky
چکیده

We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it ("bad variance," variance orthogonal to the UCM, VORT) while the other one did not ("good variance," variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Motion Dependent Afferent Activity During Cat Locomotion Using a Forward Dynamics Musculoskeletal Model

The structure and function of mammalian locomotor central pattern generators (CPGs) and their control by afferent feedback in vivo are not completely understood. The aim of this study was to develop a forward dynamics model of cat hindlimbs that using neural or muscle activity as input generates realistic locomotion mechanics and motion-dependent afferent activity. This model can be combined wi...

متن کامل

Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with paw-shake response in spinal cat.

The simultaneous control of the hindlimb paw-shake response and hindlimb walking at slow treadmill speeds (0.2-0.4 m/s) was examined in adult cats spinalized at the T12 level, 3-6 mo earlier. Paw shaking was elicited by either 1) application of adhesive tape or 2) water to the right hindpaw. To assess intralimb and interlimb coordination of the combined behaviors, activity from selected flexor ...

متن کامل

Fast, Robust and Versatile Humanoid Robot Locomotion with Minimal Sensor Input

The generation of fast and robust locomotion is one of the crucial problems to be solved for a competitive autonomous humanoid soccer robot. During the last decades many different approaches to solve this problem have been investigated. In this paper a simplified yet powerful approach for generation of locomotion for an autonomous humanoid robot is described. It is based on an open loop traject...

متن کامل

Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.

The goal of these experiments was to define the contribution of hindpaw cutaneous inputs in the expression of spinal locomotion in cats. In 3 cats, some (n = 1) or all (n = 2) cutaneous nerves were cut bilaterally at ankle level before spinalization. This denervation caused small deficits that were gradually compensated as reported in the companion study. After spinalization, the completely den...

متن کامل

Contribution of cutaneous inputs from the hindpaw to the control of locomotion : 2 . Spinal cats

The goal of these experiments was to define the contribution of hindpaw cutaneous inputs in the expression of spinal locomotion in cats. In 3 cats, some (n=1) or all (n=2) cutaneous nerves were cut bilaterally at ankle level before spinalisation. This denervation caused small deficits that were gradually compensated as reported in the companion paper (Bouyer and Rossignol, 2003a). After spinali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 112 6  شماره 

صفحات  -

تاریخ انتشار 2014